Uniform isochronous cubic and quartic centers: Revisited

نویسندگان

  • Joan C. Artés
  • Jackson Itikawa
  • Jaume Llibre
چکیده

In this paper we completed the classification of the phase portraits in the Poincaré disc of uniform isochronous cubic and quartic centers previously studied by several authors. There are three and fourteen different topological phase portraits for the uniform isochronous cubic and quartic centers respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase portraits of uniform isochronous quartic centers

In this paper we classify the global phase portraits in the Poincaré disc of all quartic polynomial differential systems with a uniform isochronous center at the origin.

متن کامل

Complexity reduction of C-Algorithm

The C-Algorithm introduced in [5] is designed to determine isochronous centers for Lienard-type differential systems, in the general real analytic case. However, it has a large complexity that prevents computations, even in the quartic polynomial case. The main result of this paper is an efficient algorithmic implementation of C-Algorithm, called ReCA (Reduced C-Algorithm). Moreover, an adapted...

متن کامل

Bi-center problem for some classes of Z2-equivariant systems

We investigate the simultaneous existence of two centers (bi-center) for two families of planar Z2-equivariant differential systems. First we present necessary and sufficient conditions for the existence of an isochronous bi-center for a planar Z2-equivariant cubic system having two centers at the points (−1, 0) and (1, 0), completing the study done by Liu and Li (2011). Next, we give condition...

متن کامل

Cubic-quartic functional equations in fuzzy normed spaces

In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation

متن کامل

Bifurcation of Limit Cycles from Quartic Isochronous Systems

This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upper bound can be reached. In addition, we study a family of perturbed isochronous systems and prove th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2017